Skip to main content

REFRACTION THROUGH CURVED SURFACES (INTRODUCTION)

 

BEHAVIOUR OF LIGHT WHEN IT ENTERS FROM ONE MEDIUM TO ANOTHER THROUGH CURVED SURFACES

Let us try to understand how to draw ray diagrams in case of curved surfaces.

We know that a ray of light passing from rarer to denser medium bends towards normal and  bends away to normal when it is passing from denser to rarer medium.

So it is important to draw a normal to the curved surface.

 Any line drawn from centre of curvature to a point on the surface acts like a normal to that surface because it makes an angle of 900  with the tangent drawn to that surface.

Tangent drawn to curved surface

Observe some examples of refraction of light through curved surfaces.

Consider blue shaded region as denser medium.

1)1)    The ray passing from rarer medium to denser medium bends towards normal.

Rtcvex1
Rtccave1

1)2)    The ray passing from denser to rarer medium bends away to normal.

Rtcvex2

Rtccave2

1)3)  The ray passing along the normal(through centre of curvature) will not deviate from its original path.

Rtccave3

Rtcvex3



                                                            thank you



Comments

Popular posts from this blog

Potential difference and emf

  POTENTIAL DIFFERENCE: When the ends of a conducting wire are connected to the terminals of a battery, an electric field is setup throughout the conductor. This field exerts a force on the charge (electron). Let Fe be the force exerted by the electric field on a free charge q. The free charges accelerate in the direction of the electric field (If the free charges are electrons, then the direction of electric force on them is opposite to the direction of electric field). It means the electric field does some work to move free charges in a specified direction.                                Let the electric force made the charges move through a distance ‘l’ from A to B as shown in figure . We know that, the work is the product of force and distance along the direction of force. Hence, work done by the electric force on a free charge q is given by W = Fe l   [since work is the product of force a...

Ohm's law, resistance and resistivity

 OHM’S LAW Before going to Ohm’s law let us discuss in brief about some electrical components or devices we use in electric circuits.    A Battery serves as a source of electricity in a circuit. We use mainly two measuring devices in this concept those are  Volt meter: used to measure potential difference between the two ends of a conductor. So it is always connected in parallel ( we learn about types of connections later in this chapter) Ammeter: used to measure the current passing in the circuit. So it is always connected in series. Now let us dive in to the activity did by Ohm to understand his concept. Materials required: 5 dry cells of 1.5V each, conducting wires, an ammeter, a volt meter, thin iron spoke of length 10cm, LED and key.   Procedure: Connect a circuit as shown in the above figure. Solder the conducting wires to the ends of the iron spoke. Close the key. Note the readings of current from ammeter and potential difference from volt meter in table ...

EXAMPLE PROBLEMS FROM REFLECTION OF LIGHT

  EXAMPLE PROBLEMS: QUESTIONS: 1)     An object is placed at a distance of 20 cm from a concave mirror of focal length 10 cm. Then find image distance and nature of the image. ANS:   Mirror type: concave Given data,   u=-20 cm( “-“ is because of sign convention, object distance should be measured from pole to object which is in opposite Direction to the direction of incident ray)    f=-10 cm ( applying sign convention same as above) mirror formula   =>    1/f=1/u+1/v ð 1/-10=(1/-20)+(1/v) ð 1/v=(1/20)+(1/-10) ð 1/v=(1/20)-(1/10) ð 1/v=(1-2)/20 (on taking L.C.M) ð 1/v=-1/20 ð V=-20 cm Nature:           Here “-“ sign indicates the image formed is real and inverted. The image is formed on the object itself as the object distance and image distance are equal. The image is formed at C. (refer case 3 of concave mirror)   2)     ...